Die so gewonnenen Magneten sind polarisiert - d. h., jeder Magnet hat zwei Seiten oder Enden, die man magnetischer Nordpol und magnetischer Südpol nennt. Gleichnamige Pole stoßen einander ab, ungleichnamige ziehen sich gegenseitig an.
Der Kompaß wurde im Abendland für Zwecke der Navigation erstmals nach 1200 benutzt. Im 13. Jahrhundert untersuchte der französische Gelehrte Petrus Peregrinus Magneten. Seine Entdeckungen blieben knapp 300 Jahre gültig, bis der englische Arzt und Physiker William Gilbert 1600 sein Buch De magnete magneticisque corporibus et de magno magnete Tellure physiologia nova (Über Magneten, magnetische Körper und die Erde als großen Magneten) veröffentlichte. Gilbert ging mit wissenschaftlichen Mitteln an die Erforschung der Elektrizität und des Magnetismus heran. Er konnte zeigen, daß die Erde sich selbst wie ein großer Magnet verhält und widerlegte durch eine Reihe von Versuchen mehrere unrichtige Annahmen seiner Zeit über den Magnetismus. 1750 erfand der englische Geologe John Michell eine spezielle Waage, die er zur Untersuchung magnetischer Kräfte benutzte. Er zeigte, daß Anziehung oder Abstoßung zwischen zwei Magnetpolen mit dem Quadrat des Abstands abnimmt. Der französische Physiker Charles Augustin de Coulomb, der die Kräfte zwischen geladenen Teilchen untersuchte, bestätigte später Michells Beobachtungen mit hoher Genauigkeit.
Elektromagnetische Theorie
Michael Faraday
Britischer Physiker und Chemiker (22.9.1791-25.8.1867); Autor bedeutender Werke zu experimentellen Versuchen über Elektrizität.
Induktion in einem einfachen Stromkreis
In einem geschlossenen Stromkreis induziert der elektrische Strom einen Magnetfluß.
Im späten 18. und frühen 19. Jahrhundert wurden die Theorien der Elektrizität und des Magnetismus ausgearbeitet. 1819 entdeckte der dänische Physiker Hans Christian Ørsted, daß eine Magnetnadel durch einen Strom, der durch einen Draht fließt, aus der Nord-Süd-Lage abgelenkt werden kann. Diese Entdeckung, die eine Verbindung zwischen Elektrizität und Magnetismus aufzeigte, gab den Anstoß zu vertiefenden Untersuchungen der französischen Wissenschaftler André Marie Ampère, der die Kräfte zwischen stromführenden Leitungen untersuchte, und Dominique François Jean Arago, der ein Stück Eisen magnetisierte, indem er es in die Nähe einer stromführenden Leitung gebracht hat. 1831 entdeckte der englische Wissenschaftler Michael Faraday, daß in einem Kabel ein elektrischer Strom induziert wird, wenn man einen Magneten daran vorbeiführt. Dies ist genau der umgekehrte Effekt zu dem von Oersted gefundenen: Oersted zeigte, daß elektrischer Strom ein Magnetfeld erzeugt, während Faraday zeigte, daß ein magnetisches Feld einen Stromfluß bewirken kann. Die Vereinheitlichung der Theorien der Elektrizität und des Magnetismus gelang schließlich dem englischen Physiker James Clerk Maxwell, der die Existenz elektromagnetischer Wellen vorhersagte und Licht als elektromagnetische Erscheinung deutete.
Spätere Untersuchungen des Magnetismus gingen zunehmend von einem atomaren und molekularen Ursprung des Magnetismus aus. 1905 stellte der französische Physiker Paul Langevin eine Theorie auf, die die Temperaturabhängigkeit der magnetischen Eigenschaften von Paramagneten (siehe unten) erklärte, die ihrerseits auf die atomaren Strukturen der Materie zurückzuführen ist. Der französische Physiker Pierre Ernst Weiss erweiterte darauf die Theorie Langevins, indem er die Existenz eines inneren "molekularen" Magnetfeldes in Materialien wie Eisen postulierte. In Verbindung mit Langevins Theorie erklärte dieses Konzept die Eigenschaften stark magnetischer Materialien wie Magnetit.
Das Atommodell des dänischen Physikers Niels Bohr lieferte einen Ansatz zum Verständnis des periodischen Systems der Elemente und konnte zeigen, warum Magnetismus insbesondere bei Übergangsmetallen wie Eisen und bei seltenen Erden oder in Verbindungen, die solche enthalten, zu beobachten ist. 1925 zeigten die amerikanischen Physiker Samuel Abraham Goudsmit und George Eugene Uhlenbeck, daß das Elektron einen Spin hat und sich wie ein kleiner Stabmagnet mit genau bestimmbarem magnetischem Moment verhält. Das magnetische Moment eines Körpers ist eine Vektorgröße, die Stärke und Ausrichtung seines Magnetfeldes angibt. Der deutsche Physiker Werner Heisenberg konnte 1927 auf der Basis der damals gerade entwickelten Quantenmechanik (siehe Quantentheorie) eine präzise Erklärung für Weiss' molekulares Feld geben. Andere Wissenschaftler sagten damals viel komplexere atomare Anordnungen des magnetischen Moments mit völlig unterschiedlichen magnetischen Eigenschaften voraus.
Magnetfeld
Ein Dauermagnet oder ein stromführender Draht üben auf magnetisierbare Substanzen Kräfte aus, ohne sie zu berühren: Sie erzeugen ein magnetisches Feld. Magnetfelder werden oft durch magnetische Feldlinien bzw. Flußlinien graphisch veranschaulicht.