1. Introducere
In aceasta epoca a calculului distribuit, retelele sunt prezentate in aproape toate mediile de lucru. O retea este un mecanism care permite calculatoarelor distincte si utilizatorilor acestora sa comunice si sa partajeze resurse. In ciuda utilizarii lor pe scara larga, retelele raman cele mai misterioase dintre tehnologiile informationale.
2. Evolutia retelelor
Retelele au fost initial solutii de conectivitate brevetate, care erau parte integranta a unui pachet de solutii informatice, in aceeasi masura brevet at. Companiile care automatizau procesarea de date sau functiile de contabilitate in epoca de dinaintea calculatoarelor personale erau obligate sa se adreseze unui singur comerciant pentru a obtine o solutie la cheie. Configuratiile tipice includeau terminale simple, care erau cablate la controllere de dispozitiv. Controllerele de dispozitiv asigurau accesul comun, sau multiplexat, la resursele de comunicare, ce asigurau conectivitatea cu sistemele mainframe. Aceste resurse de comunicare erau reunite intr-un procesor front-end (FEP) al sistemului mainframe. FEP permitea mai multor resurse sa partajeze un singur canal catre mainframe. Datorita diferentelor dintre viteza de intrare/iesire si viteza procesoarelor sistemului mainframe, aceasta solutie (figura. 1.1) era cea mai eficienta din punct de vedere financiar.
Calculator Mainframe
Terminal Simplu Terminal Simplu Terminal Simplu Terminal Simplu
Figura 1.1 Accesul cablat la sistemele mainframe
Altfel, era utilizata o linie inchiriata cu largime de banda mica pentru traversarea distantei geografice pana la mainframe. In acel loc, linia inchiriata era conectata la canalul de intrare/iesire (I/O) al sistemului mainframe.
In aceste medii, aplicatiile software erau executate doar pe un calculator cu un unic sistem de operare. Sistemul de operare putea fi executat numai pe produsele hardware ale aceluiasi distribuitor. Chiar si echipamentul terminal si conexiunile la calculator faceau parte din aceeasi solutie integrata a unui singur producator.
In timpul domniei solutiilor integrate ale unui singur producator, au aparut doua directii de dezvoltare tehnologica, ce au schimbat cursul viitor al informaticii. In primul rand au inceput sa apara stramosii PC-urilor de astzi. Aceste dispozitive erau inovatoare prin aceea ca plasau puterea de calcul chiar pe birou.
In al doilea rand, oamenii de stiinta de la Xeror Palo Alto Research Center (PARC) au inceput sa caute modalitati de imbunatatire a productivitatii proprii. Au cautat in special un mijloc de imbunatatire a partajarii datelor si fisierelor intre statiile de lucru inteligente pe care le aveau. Metoda existenta, de partajare a dischetelor, era problematica si consuma timp.
Solutia lor a fost prima retea LAN pe care au numit-o ethernet. Aceasta era o retea LAN rudimentara care se baza, pentru o mare parte a definirii si comportarii sale, pe protocoale de nivel superior pentru inter-retele. Potentialul comercial a acestei tehnologii a devenit imediat evident. Ethernetul original, cunoscut acum ca PARC Ethernet sau Ethernet I, a fost completat de o versiune cu comportament mai bun. Aceasta solutie, dezvoltata de Xerox, Digital si Intel, a devenit cunoscuta sub numele de DIX Ethernet sau Ethernet II. Impreuna, Digital, Intel si Xerox au stabilit "standardele" pentru Ethernet II si au produs tehnologiile sale componente.
Impreuna, dispozitivele inteligente ale utilizatorilor si retelele locale vor da nastere unui nou model: prelucrarea deschisa, distribuita, in retea, a datelor.
2.1 Organizatiile de standardizare
Succesul pe care l-au avut cu Ethernet I si II a demonstrat ca piata era satula de abordarea brevetata a pachetelor pentru lucrul in retea si prelucrarea datelor. Clientii au inceput sa solicite un mediu mai deschis, care sa le permita sa construiasca aplicatii pornind de la produse amestecate, provenite de la producatori diferiti. Asa cum a aratat Ethernet, interoperabilitatea incuraja competitia, prin inovatii tehnice. Prin urmare, obiectivele interdependente ale deschiderii erau urmatoarele:
. Costuri mai mici
. Posibilitati mai mari
. Interoperabilitate intre producatori
Interoperabilitatea intre producatori presupunea ca platformele diferite sa se recunoasca una pe cealalta si sa stie cum sa comunice si cum sa partajeze date. Aceasta a necesitat dezvoltarea de standarde neutre, in intreaga industrie, pentru fiecare aspect al lucrului in retea.
Nevoia de standardizare a generat un efort considerabil. Astazi, exista numeroase organizatii de standardizare, care raspund de definirea standardelor nationale si/sau internationale pentru diferite aspecte ale tehnologiilor de calcul, inclusiv pentru comunicatii de date si lucru in retea. Desi, frecvent, aceste organizatii colaboreaza sau coopereaza pentru a asigura un set de standarde cat mai universal, pot exista totusi anumite confuzii, dar efectul covarsitor este pozitiv.
ANSI - American National Standards Institute (ANSI) este o organizatie privata, nonprofit. Scopul sau este sa faciliteze dezvoltarea, coordonarea si publicarea de standarde nationale voluntare.
IEEE - Institute of Electric and Electronic Engineers (IEEE) raspunde de definirea si publicarea standardelor pentru telecomunicatii si comunicatii de date.
ISO - International Organization for Standardization (ISO) a fost fondata in 1964 si are sediul la Geneva. Este o organizatie bazata pe activitate voluntara, fara contracte, si este autorizata de Natiunile Unite pentru definirea de standarde internationale.
IEC - International Electrotechnical Commission (IEC), de asemenea cu sediul la Geneva, a fost fondata in 1909. IEC stabileste standarde internationale pentru tot ce este legat de electronica si electricitate.
IAB - Internet Architecture Board, cunoscuta anterior ca Internet Activities Board, guverneaza dezvoltarea tehnica a Internetului. Contine doua comitete de lucru: Internet Engineering Task Force (IETF) si Internet Research Task Force (IRTF).
2.2 Modelul de referinta OSI
ISO a dezvoltat modelul de referinta OSI (Open Systems Interconnection - interconectarea sistemelor deschise), pentru a facilita deschiderea interconexiunii sistemelor de calculatoare. O interconexiune deschisa este o interconexiune care poate fi acceptata intr-un mediu multiproducator. Acest model a stabilit standardul universal pentru definirea nivelurilor functionale necesare acceptarii unei astfel de conexiuni intre calculatoare.
In urma cu aproape 20 de ani, cand a fost dezvoltat, modelul de referinta OSI a fost considerat radical. La vremea respectiva, producatorii de calculatoare blocau clientii in arhitecturi brevetate, cu un singur producator. Comunicatia deschisa a fost privita ca o invitatie la competitie. Din perspectiva producatorilor, competitia era nedorita. Prin urmare, toate functiile erau integrate cat mai compact posibil. Notiunea de modularitate functionala, sau layering (stratificare), parea in antiteza cu misiunea oricarui producator.
Este important de remarcat ca modelul a avut mare succes. Abordarea integrata anterioara, brevetata, a disparut. Astazi, comunicatiile deschise sunt un lucru necesar. In mod curios, foarte putine produse respecta in totalitate modelul OSI. In schimb, structura sa elementara, pe niveluri, este frecvent adaptata noilor standarde. Pe de alta parte, nivelul de referinta OSI ramane un mecanism viabil pentru explicarea functionarii retelei.
In ciuda succeselor sale, continua sa existe numeroase confuzii legate de modelul de referinta OSI.
Prima confuzie este aceea ca modelul de referinta OSI a fost dezvoltat de International Standards Organisation (tot ISO), cu sediul la Paris. Nu este adevarat. Modelul de referinta OSI a fost dezvoltat de catre International Organization for Standardization.
Modelul OSI clasifica diferitele procese necesare intr-o sesiune de comunicare pe sapte niveluri (straturi) functionale. Organizarea acestor straturi are la baza secventa naturala de evenimente care apare in timpul sesiunii de comunicare. Figura 1.2 prezinta modelul de referinta OSI. Nivelurile 1-3 asigura accesul prin retea, in timp ce nivelurile 4-7 sunt dedicate logisticii necesare pentru a comunica dintr-un capat in altul.
Modelul de referinta OSI Numarul nivelului
Aplicatie 7
Prezentare 6
Sesiune 5
Transport 4
Retea 3
Legatura de date 2
Fizic 1
Figura 1.2 Modelul de referinta OSI
Nivelul 1: Fizic
Primul nivel este numit nivel Fizic. Acest nivel raspunde de transmiterea sirului de biti. El accepta cadre de date de la nivelul 2, Legatura de date, si transmite serial, bit cu bit, structura si continutul acestora.
De asemenea, este raspunzator pentru receptionarea, bit cu bit, a sirurilor de date care sosesc. Aceste siruri sunt transmise apoi nivelului Legatura de date, pentru a fi refacute cadrele.
Acest nivel vede, literalmente, numai cifre de 0 si 1. El nu are nici un mecanism pentru determinarea semnificatiei bitilor pe care ii transmite sau ii primeste, ci este preocupat exclusiv de caracteristicile fizice ale tehnicilor de transmitere a semnalelor electrice si/sau optice. Acestea includ tensiunea electrica utilizata pentru transportul semnalului, tipul mediului si impedantele caracteristice si chiar forma fizica a conectorului utilizat la capatul mediului de transmisie.
Nivelul 2: Legatura de date
Al doilea nivel al modelului de referinta OSI est nivelul Legatura de date. Ca toate celelalte, nivelul Legatura de date are doua seturi de responsabilitati: transmisie si receptie. El raspunde de asigurarea validitatii cap-la-cap a datelor transmise.
Din punct de vedere al transmisiei, nivelul Legatura de date raspunde de gruparea in cadre a instructiunilor, datelor si asa mai departe. Un cadru este o structura inerenta nivelului Legatura de date, care contine informatii suficiente pentru a asigura transmiterea reusita a datelor, prin reteaua locala, spre destinatie.
Un transfer reusit presupune ca, la sosirea la destinatie, cadrele sa fie intacte. Prin urmare, cadrele trebuie sa contina un mecanism de verificare a integritatii continutului in timpul transferului.
Pentru o livrare garantata a datelor trebuie sa se intample doua lucruri:
. Nodul initial trebuie sa primeasca o confirmare pentru fiecare cadru care a fost primit intact de catre nodul destinatar.
. Inainte de a confirma primirea unui cadru, nodul destinatar trebuie sa verifice integritatea continutului cadrului respectiv.