Dintre contemporanii lui Descartes, nici unul nu a aratat un geniu natural mai bine decat Pascal. Reputatia lui in matematica consta mai mult in ceea ce ar fi putut face decat in ceea ce a facut efectiv, deoarece o lunga perioada din viata a considerat ca datoria lui este de a se con¬centra asupra exercitiilor religioase.
Blaise Pascal s-a nascut pe 19 iunie 1623 in Clermont si a murit la Paris in 19 august 1662. Tatal lui, un judecator din Clermont, avand la randul sau un anumit renume in stiinta, s-a mutat in Paris in 1631, pentru a-si continua propriile studii pe o parte, si pentru a-si educa unicul sau fiu care dovedise deja abilitati exceptionale. Micul Blaise a fost tinut acasa pentru nu se obosi prea mult si din acelasi motiv educatia lui a fost mai intai restransa la invatarea limbilor straine, neincluzand evident matematica. Acest program a simulat curiozitatea baiatului si, intr-o zi, la doisprezece ani, a intrebat ce este geometria. Invatatorul lui i-a raspuns ca este stiinta construirii figurilor exacte si a determinarii proportiilor dintre diferite parti ale lor. In curand Pascal se apuca de studiat geometria, sacrificandu-si timpul de joaca si in ciuda restrictiilor care ii erau impuse, si in cateva saptamani descopera singur multe proprietati ale figurilor. Cea mai importanta este aceea privitoare la suma unghiurilor unui triunghi care este egala cu doua unghiuri drepte, res¬pectiv 180 de grade. Se pare ca dovada consta simplu in impaturarea unghiurilor peste figura astfel incat varfurile lor sa se intalneasca in centrul cercului inscris in triunghi. O demonstratie similara se poate obtine prin impaturarea unghiurilor astfel incat ele sa se intalneasca pe piciorul perpendicularei duse din varful unghiului cel mai mare pe latura opusa. Impresionat de aceasta demonstratie inteligenta, tatal sau i-a dat o copie a cartii Elementele de Euclid, pe care Pascal o citeste cu interes pana cand o invata.
La varsta de paisprezece ani este admis la intalnirile saptamanale tinute de Roberval, Mersenne, Mydorge si de alti matematicieni francezi. In final din aceste sedinte se naste Acade¬mia Franceza. La varsta de saisprezece ani Pascal scrie un eseu despre conice, iar la optspre¬zece ani construieste prima masina aritmetica, un calculator rudimentar, pe care o va imbunatatii peste opt ani. Scrisorile lui catre Fermat arata ca aproximativ in aceasta perioada se concentra asupra geometriei analitice si fizicii. A repetat si experimentele lui Toricelli.
In 1650 la mijlocul carierei lui stiintifice, Pascal si-a abandonat brusc idealurile lui in favoarea reli¬giei, asa cum zice in Pensées, "contempleaza maretia si misterul omului ".
In 1653 a trebuit sa administreze mosia tatalui sau. Acum a adoptat iarasi vechile lui ocupatii si a facut cateva experimente asupra presiunii exercitate de lichide si gaze. In aceeasi perioada a inventat triunghiul aritmetic, si impreuna cu Fermat a creat calculul probabilitatilor.
Medita asupra casatoriei cand un accident l-a determinat iarasi sa se concentreze asupra religiei. S-a mutat la Port Royal unde a trait pana in 1662.
Singura lucrare matematica care o mai scrie o a fost un eseu despre cicloida in 1685. Su¬ferea de insomnie si de o durere de dinti cand i-a venit idea si spre surprinderea lui suferinta i-a trecut. Privind aceasta ca un semn divin a continuat problema, lucrand fara oprire opt zile, si a terminat o lucrare relativ completa despre geometria cicloidei.
Prima lucrare asupra geometriei conicilor, scrisa in 1639, a fost publicata doar in 1779. Conica este o curba plana rezultata din intersectia unui con circular cu un plan. Se pare ca a fost scrisa sub indrumarea lui Desargues. Doua rezultate sunt deopotriva importante si interesante. Primul este o teorema cunoscuta sub numele de Teorema lui Pascal :
Daca un hexagon poate fi inscris intr-o conica atunci punctele de intersectie ale laturilor opuse vor fi colinieare (pe aceiasi dreapta). A doua care i se datoreaza in mare parte lui Desargues spune urmatoarele:
Daca un patrulater poate fi inscris intr-o conica si ducem o dreapta care intersecteaza latu¬rile in A, B ,C respectiv D, si conica in P si Q atunci:
.
Pascal si-a imbunatatit triunghiul aritmetic in 1653, dar nu exista nici o consemnare a me¬todei lui pana in 1665. Triunghiul este o figura simpla (ca cele doua si se poate continua la infinit). Fiecare linie este formata din numere egale cu suma numerelor din stanga pozitiei de pe linia precedenta. De exemplu 20=1+3+6+10. Daca asezam triunghiul altfel (ca in dreapta) este mai usor sa vedem ca un numar este egal cu suma celor doua numere de deasupra lui, respectiv suma dintre numarul din stanga si cel de deasupra in prima figura. varful triunghiului fiind 1. Cele doua reguli sunt echivalente.