Administratie | Alimentatie | Arta cultura | Asistenta sociala | Astronomie |
Biologie | Chimie | Comunicare | Constructii | Cosmetica |
Desen | Diverse | Drept | Economie | Engleza |
Filozofie | Fizica | Franceza | Geografie | Germana |
Informatica | Istorie | Latina | Management | Marketing |
Matematica | Mecanica | Medicina | Pedagogie | Psihologie |
Romana | Stiinte politice | Transporturi | Turism |
Caracterizarea elementelor de inchidere
Asigurarea unor spatii confortabile pentru desfasurarea activitatilor umane, presupune utilizarea unor elemente de inchidere, au o contributie importanta in asigurarea confortului termic in spatiile de sedere, deoarece ele pot constitui bariere mai mari sau mai mici la transferul de caldura, de umiditate, iluminare si zgomot.
Convenim sa impartim elementele de constructie utilizate pentru inchidere in doua categorii:
a - elemente de inchidere inertiale, caracterizate prin acumulare de caldura, transfer termic defazat si amortizat;
b - elemente de inchidere neinertiale, caracterizate prin transfer termic nedefazat si neamortizat.
Ambele categorii pot fi realizate ca structuri neomogene (din mai multe straturi neomogene).
Pe de alta parte, structurile inertiale mai pot fi numite si opace deoarece el nu permit transmiterea luminii, in timp ce elementele neinertiale unt utilizate in mod special pentru transmiterea luminii.
La alegerea structurilor de inchidere se iau in considerare doua regimuri termice externe: primul, in care temperaturile exterioare sunt foarte coborate in raport cu temperaturile de confort si care este cunoscut ca regim de iarna, caracterizat prin transfer de caldura de la interior spre exterior; al doilea caracterizat de temperaturi exterioare mai mari decat cele de confort, numit regim de vara, caz in care transferul de caldura se realizeaza de la exterior spre interior.
O analiza a comportamentului celor doua categorii de elemente de inchidere, in cele doua regimuri s-ar prezenta ca in figura 1.in care sunt analizate cele doua tipuri de structuri in cuplaj cu cele doua regimuri termice.
Fig.1. Comportamentul elementelor de inchidere la transfer de
caldura (Q), energie luminoasa (E), energie acustica (B): a
- elemente inertiale b - elemente neinertiale
Rezulta deci, ca elementele de inchidere trebuie sa satisfaca simultan mai multe conditii si anume: consum minim de energie in procesul de fabricatie, transfer minim de energie termica in cadrul cladirii, transparenta optima pentru asigurarea iluminatului natural, bune izolatoare fonice si uneori rezistenta la efractie. Toate aceste conditii pot fi incluse intr-o marime numita rezistenta de confort (Rcf) exprimata analitic astfel:
Rcf = f(Rtermica, Rfonica, Riluminare)
In ansamblul sau, o cladire este analizata cel putin sub aspectele enuntate mai sus, cautandu-se de fiecare data o solutie optima tehnica si economica.
2.Caracteristici termofizice
2.1.Coeficientii de transfer termic
Marimile fizice specifice elementelor de constructie omogene puse in discutie se vor referi la transferul de caldura si masa.
Dupa cum se stie, transferul de caldura se poate realiza prin conductie, convectie si radiatie.
Caracteristic transferului conductiv, este coeficientul de conductivitate l, care exprima transferul de caldura realizat printr-o suprafata de 1 m2, la o diferenta de temperatura de 1 grad. de unde rezulta unitatea de masura: [l] = W/m grad;sau W/mK.
Transferul de caldura convectiv si radiant este aproape in toate aplicatiile noastre simultan,si se realizeaza intre un fluid, si o suprafata solida. Marimea fizica ce caracterizeaza aceasta forma de transfer de caldura este coeficientul de transfer superficial, notat cu "a si care inglobeaza cele doua forme de transfer: prin conventie si prin radiatie.
Pentru cazul unui perete plan, transferul superficial prin conventie si radiatie se realizeaza atat la exterior, de la "te" la "qe cat si de la "ti" la qi
Pentru cazul pertelui plan omogen, se scrie expresia fluxului termin unitar "q"
q = ai(ti - qi) = (qe qi ae(te - qe) = k(ti - te); W/m2
in care:
ai acvi aradi ae acve arade W/m2grd
Pentru cele doua forme de transfer sunt cunoscuti coeficienti de transfer superficial specifici , ,,acv' pentru transferul convectiv si ,,arad' pentru transferul radiant, existand relatii de calcul, precum si valori globale normate.
Transferul de caldura prin radiatie, se exprima prin legea Stefan-Boltzman prin relatia cunoscuta:
; W/m2K
in care:
C1 si C2 - sunt coeficientii de radiatie ai suprafetei elementului de constructie si ai aerului
Co = 4,96 - este coeficient de radiatie a corpului absolut negru;
ti,e - reprezinta temperatura aerului interior si exterior
qi,e - reprezinta temperatura superficiala a elementului de constructie, pentru suprafata interioara sau exterioara.
Coeficientul de transfer superficial de caldura prin conventie "ac" variaza functie de diferenta de temperatura intre aer si suprafata elementului de constructie si viteza aerului.
Pentru suprafetele interioare, rezultatele experimentale efectuate de catre K. F. Fokin, au condus la expresiile
ti - qi 5 grd acv = 3 + 0,008 (ti - ti); W/m2grd
ti - q > 5 grd acv = b W/m2grd
in care b este un coeficient de corectie care are urmatoarele valori
b = 2,2 - pentru aerul din incaperi inchise cu volum redus
b = 2,75 - pentru aerul din incaperi industriale cu utilaje in miscare sau langa suprafete care se racesc mult, ca de exemplu ferestre si usi;
Pentru suprafetele exterioare, devine importanta viteza aerului, fapt pentru care in relatiile de calcul al coeficientului de transfer superficial convectivinfluenta cestuia este diferita,cum se poate constata in expresiile de mai jos
- pentru pereti exteriori
acv = 3 + 10 [W/m2grd
- pentru acoperisuri fara pod
acv = 3 + 5 [W/m2grd
In care "v" este viteza de calcul a vantului exprimat in m/s iar lm este latura mica a acoperisului in plan in m.
In tara noastra stas 6472 - Termotehnica in constructii - normeaza unele marimi termotehnice din care se retin:
coeficientii de conductivitate termica l pentru 98 materiale omogene;
ai acv ar 8, pentru cateva cazuri particulare;
ai acv ar = 20 si 23,pentru situatia de iarna si de vara.
Se observa ca transferul de caldura superficial datorat componentei convective si radiante, la suprafata rece (exterioara iarna) este mai mare decat la suprafata calda (interioara). ae >> ai
Acest fapt se explica prin cresterea componentei convective la exterior datorita regimului turbulent determinat de miscarea aerului si in mai mica masura de schimbul radiant.
In expresia fluxului termic unitar, apare si coeficientul de transfer global de caldura notat cu "k", a carui expresie cunoscuta este urmatoarea:
; [W/m2grd]
In practica instalatiilor energetice se lucreaza curent cu marimi inverse coeficientilor de transfer, numite rezistente termice la transfer convectiv, conductiv si radiant sau combinatii ale acestora.
Expresia fluxului termic unitar rescrisa functie de aceste noi marimi are forma:
[W/m2]
in care rezistentele termice pot fi scrise sub forma:
; ;
; [m2grd/W]
2.2.Acumulare de caldura
In practica constructiilor s-a constatat ca unele structuri, utilizate pentru inchidere, dau rezultate mai bune din punct de vedere al asigurarii confortului termic.
Spre exemplu o camera cu temperatura interioara de + 20 oC si temperatura exterioara de - 150C, avand incalzire continua, urmata de o oprire a instalatiei de incalzire timp de 8 ore, va avea o temperatura medie de radiatie qmr 0 oC daca structura este din caramida plina de 37,5 cm si qmr = -10 oC daca structura este echivalenta termic (R = idem) dar executata din B.C.A.
Aceasta diferenta de comportament, se datoreaza capacitatii de acumulare termica a celor doua materiale, exprimata printr-o marime, notata cu "s", denumita coeficient de asimilare termica .
Pentru exemplul de mai sus, valorile coeficientului de acumulare sau asimilare termica sunt urmatoarele:
sBCA = 1,51 W/m2K ,pentru r = 300 kg/m3 4,93 W/m2K, pentru r = 1000 kg/m3
scaramida = 9,63 W/m2K ,pentru r = 1800 kg/m3
Explicatia comportamentului diferentiat, consta in capacitatea mare de acumulare a caldurii in timpul functionarii instalatiei de incalzire, ca apoi in regim de racire sa mentina o temperatura superficiala ridicata.
Tot prin capacitatea diferita de acumulare se explica senzatia de material rece sau cald pe care o putem avea la contactul cu acestea.
Daca de exemplu atingem o suprafata de marmura, avem senzatia de rece iar in cazul uneia din lemn, senzatia va fi de cald.
Coeficientii de acumulare ai celor doua materiale sunt:
Smarmura = 25,40 W/m2K; Slemn = 4 5,80 W/m2K
In primul caz, se absoarbe multa caldura, racind mana celui ce efectueaza experimentul iar in cazul al doilea se absoarbe putina caldura inducand senzatia de suprafata calda.
Coeficientul de acumulare termica, numit si de asimilare termica se determina functie de alte marimi fizice specifice materialelor omogene in conditiile acceptarii modelului ondulatoriu al undei de temperatura, a carei perioada de oscilatie "T" poate fi 7, 12 sau 24 ore.
; [W/m2K]
Pentru calcule uzuale se utilizeaza perioada T = 24, caz in care coeficientul de acumulare se noteaza "s24".restul marimilor avand semnificatia urmatoare: l - coeficient de conductibilitate, cp - caldura specifica, r - masa specifica.
Acumularea de caldura este bine sa fie maxima iarna si minima vara, conditie care trebuie indeplinita de catre structurile alese pentru inchidere. Pentru a obtine aceasta calitate a structurilor, se au in vedere combinatii de materiale omogene, utilizandu-se asa numitele structuri neomogene. In multe aplicatii practice se iau in discutie structuri care contin materiale termoizolatoare ,care se caracterizeaza prin l = mic, r = mic si s = mic.
Pentru a evidentia dependenta capacitatii de acumulare termica de regimul termic extern si pozitia straturilor termoizolatoare se considera un perete plan la care se poate admite ca segmentul q i q e , corespunzator regimului stationar initial iar segmentul q i q e regimului stationar final (dupa incalzire).
Pentru o suprafata elementara situata la distanta "x" de ffata interioara si de grosime infinit mica "dx" vom putea scrie:
qi qx qi qe T
T qx qi qi qe
qx qi qi qe");
Pe baza ecuatiei calorimetrice clasice scrisa pentru un element de volum de grosime "dx" si cu suprafata de 1 m2 se poate scrie:
q = cp (qx qx')dx
de unde prin integrare rezulta:
q = cp = rcp δ( θ'm - θ'm ) [w/m2]
Calculandu aria cuprinsa intre cele doua segmente, in conditii de temperatura medie, se obtine la scara 1/ρ c, caldura acumulata in peretele de grosime ,,d' cu suprafata de 1 m2.
A=d qm qm')=;
In continuare se va analiza acumularea termica in cazul plasarii termoizolatiei la exterior,,cazul A' respectiv la interior ,,cazul B', evidentiind efectele in cele doua regimuri termice: iarna si respective vara.
In cazul montajulul termoizolatiei la exterior, suprafata qi qi q qe"θ'e este mai mare decat suprafata q q q1Bqe"θ'e , de unde concluzia ca acumularea maxima de caldura se obtine pentru cazul montarii termoizolatiei la exterior.
▪Regimul de vara:
Suprafata qi qi q1A qe qe' este mai mica decat suprafata qi qi q1B qe qe', deci acumularea de caldura este mai mica vara in cazul montajului la exterior al termoizolatiei.
Iata deci, ca prin prevederea unor materiale termoizolatoare la exterior obtinem acumulare mare iarna si mica vara, o calitate ce trebuie conferita constructiilor noi chiar daca coeficientul de acumulare termica ,,s'al izolatiei este mic.
2.Masivitatea elementelor de constructie
Notiunea de masivitate este conventional acceptata, pentru a permite o clasificare a comportamentului elementelor de constructie fata de solicitarile termice externe. In calculele de transfer de caldura se utilizeaza marimea numita coeficient de masivitate, notat cu "m" acesta exprimand inertia pe care o manifesta o structura oarecare la transmiterea fuxului de caldura.
Aceasta marime se poate calcula si relatia aproximativa data mai jos:
m 1,225 - 0,05D
in care D - reprezinta indicele de inertie termica al unui element de constructie, care se poate determina cu relatia:
D = Rs24 = s24;
Pentru structuri neomogene acest indice se calculeaza ca suma a indicilor de inertie ai structurilor omogene:
Luand in considerare sensul de masivitate in clasificarea elementelor de constructie se obtine tabelul de mai jos:
|
masivitate mica |
masivitate mare |
||||
D |
|
|
|
|
|
|
m |
|
|
|
|
|
|
Limita inferioara a elementelor cu masivitate mica este reprezentata de catre elementele neinertiale (ferestre, usi etc.), care nu acumuleaza caldura si o transmit instantaneu (fara defazaj), media este reprezentata de zidaria din caramida plina iar limita inferioara de structurile inertiale care au rezistentele termice optimizate.
2.4.Capacitatea de amortizare a undelor de temperatura
Transferul de caldura prin pereti plani, in conditii reale, se realizeaza in regim nestationar. Modelele de calcul corespunzatoare acestei realitati sunt complicate si pot fi efectuate numai utilizand tehnici de calcul automat. Pentru multe aplicatii curente, este insa satisfacator modelul de transfer stationar, la care insa se ataseaza marimi fizice ca amortizarea si defazarea fluxului termic sau a unei unde de temperatura.
Pentru explicarea acestor marimi, se va considera un perete plan pe care se vor reprezenta variatiile amplitudinii undelor termice. Variatiile temperaturii aerului exterior, produc variatii ale temperaturii in structura elementelor de constructie si sunt in buna parte - pana ajung in partea interioara - amortizate.
Aceste variatii se produc de obicei, sub forma de oscilatii de temperatura, cu perioada de 24 ore. Pentru a caracteriza capacitatea elementelor de constructie de a amortiza aceste oscilatii de temperatura s-a introdus notiunea de coeficient de amortizare, notat cu "n , care este definit ca fiind raportul intre amplitudinea oscilatiilor de temperatura exterioare "Ate" si amplitudinea oscilatiei temperaturii pe fata interioara (calda) "Ati"
n [1]
Aceasta caracteristica termica, este importanta pentru confortul termic interior, deoarece variatii mari ale temperaturii suprafetelor interioare pot conduce la temperaturi medii de radiatie ,,qmr in afara limitelor de confort sau la temperaturi mai mici sau egale cu cea a punctului de roua vaporii de apa din aer pot condensa pe aceste suprafete.
Exista recomandarea ca in timpul iernii, sa se asigure o oscilatie a temperaturii suprafetei interioare de maximum Ati = 0,6 . 0,7grd.
Avand in vedere ca oscilatiile de temperatura ale aerului exterior, sunt Ate= 6 grd., rezulta ca este necesar sa se asigure un coeficient de amortizare de
n
Proprietatea elementelor de constructie de a amortiza oscilatiile de temperatura are influenta asupra stabilirii temperaturilor exterioare teoretice de calcul ,te, respectiv asupra rezistentei la transmisia de caldura. De exemplu pentru stabilirea temperaturii exterioare de calcul s-au avut in vedere elementele de constructie care aveau un coeficient de amortizare de circa n = 30. Pentru elementele de constructie cu capacitati de amortizare mai mici s-au prevazut coeficienti de corectie numiti coeficienti de masivitate ,notati cu m.
Dar fluxul termic ce traverseaza o structura pe langa amortizare mai sufera si o defazare fata de momentul plecarii. Daca deci, o solicitare termica externa provoaca aparitia unui transfer de caldura (flux termic) la momentul t = 0, acesta ajunge catre suprafata interioara la momentul t = h, defazajul fiind marimea care exprima diferenta acestor timpi. Deci putem scrie:
h= f (t t [ore]
Cele doua marimi, n si h sunt dependente de indicele de inertie D precum si de capacitatea de acumulare termica a suprafetelor.In figura alaturata este indicata variatia celor doua marimi n si h, functie de D, pentru betonul armat.
Se observa ca variatia coeficientului de amortizare n,se prezinta sub forma unei curbe si ca are valori semnificative pana la D 4, in timp ce valorile defazajului h, cresc linear cu D. Datorita acestui comportament s-au facut propuneri ca normarea structurilor sa se faca in functie de n si h, ceea ce a fost preluat de catre metoda romaneasca de stabilire a temperaturii exterioare de calcul.Aceste doua marimi sunt importante deoarece permit stabilirea regimului de incalzire, alegerea aparatelor de automatizare aferente si a masurilor de gestionare a energiei in cladiri.
Rezistente termice pentru elemente inertiale
1.Structuri omogene
Consideram un perete plan care este supus unei solicitari termice ti > te, pentru care ne propunem sa stabilim campul de temperaturi si a conditiilor minime pe care trebuie sa le indeplineasca.
Scriem expresia conservarii fluxului termic:
din care se poate deduce campul de temperaturi:
Ambele temperaturi superficiale depind de rezistenta termica totala care nu este cunoscuta. Aceasta poate fi dedusa daca structurii i se impun doua conditii de confort care trebuiesc indeplinite simultan si anume:
- temperatura "qi" sa asigure conditia de confort ca temperatura medie de radiatie, putand astfel satisface si conditia ca amplitudinea oscilatiei temperaturii superficiale sa se incadreze in valorile normale.
- temperatura "qi" sa fie mai mare decat temperatura punctului de roua "qt" la care vaporii de apa din aerul unei incaperi pot condensa pe acea suprafata. Pentru aceasta conditie este important sa amintim conditia ce rezulta din diagrama I-x.
Pentru un punct de stare "A" exista o temperatura "ttA" de la care vaporii de apa din din aerul umed, vor condensa pe o suprafata a carei temperatura este egala cu temperatura de condensare.
Revenind la expresia conservarii fluxului termic putem scrie:
[m2K/W]
Daca temperaturii "qi" i se acorda valori normate pentru cazurile enumerate mai sus, putem introduce notiunea de rezistenta termica minima necesara astfel:
R0min = Ri; [m2K/W]
in care: Dqimax = ti - qi, poate introduce conditiile amintite, dar cu conditia verificarii acestora.
m - coeficient de masivitate,
2.Structuri neomogene
Cazul cel mai .frecvent intalnit in practica este cel al structurilor formate din mai multe straturi omogene. Vom lua in discutie cazul cand fluxul termic este perpendicular pe suprafata de transfer termic. Expresiile campului de temperatura se obtin din bilantul termic scris pentru fiecare strat.
in care:
Ri=1/ai Re=1/a i; R1=d l R2=d l R3=d l
R0 = Ri+R1+R2+R3+Re = ; [m2K/W]
Din sirul de egalitati rezulta:
q i= ti-
q q i-
q q -
qe q -
Pentru determinarea rezistentei minime necesare "R0" se considera valabile valorile normate pentru ecartul (ti-qi) , care in STAS 6472 este denumit "diferenta minima necesara". Cu cat aceasta diferenta este mai mica , qi va fi mai apropiata de "ti" si deci conditia de necondensare a vaporilor de apa din aerul incaperii pe suprafata sau cea referitoare la temperatura medie de radiatie vor fi satisfacute. Vom putea scrie:
R0min=Ri; [m2K/W]
Din prudenta pot fi facute verificarile mentionate mai sus pentru temperatura superficiala "qi
;
in care:
tt - temperatura punctului de roua, corespunzator starii aerului din incapere (ti=20o, ji
"n" - coeficient ce ia in considerare posibilitatea tasarii termoizolatiei.
Daca conditia de mai sus nu se verifica, se impune marirea rezistentei termice a unuia dintre straturi sau introducerea unui strat suplimentar ca strat termoizolator.
Deci vom admite ca qi < tt
R'0min=Ri;
Cu aceasta rezistenta vom incerca ajutarea rezistenti structurii neomogene pusa in discutie
R 0min=
Admitand modificarea grosimii stratului "2" prin explicitare rezulta:
Noua grosime a stratului "" va trebui majorata la valoarea de fabricatie
In conditiile noi, rezistenta reala a structurii va fi calculata cu valoarea noua , rezultand o rezistenta corectata "Roc"
Roc=;
Pentru obtinerea coeficientului de masivitate "m" se va calcula indicele de inertie termica
Doc=R1s1+R2rats2+R3s3 in care R2rat=
ca apoi moc=1,225 - 0,05 Doc
Structuri mixte
a. Structuri neomogene care au suprafetele paralele cu directia fluxului termic
Consideram o structura de grosime "d" care este formata din mai multe straturi omogene, de suprafata F1, F2, F3 a caror latime este egala cu unitatea,
Pentru acest caz se poate scrie:
[m2K/W]
in care:
[W/mK]
b. Structuri neomogene compuse din incluziuni regulate cu laturi paralele si perpendiculare pe directia fluxului termic
Pentru structura pusa in discutie, fluxul termic are suprafata in raport cu care este perpendiculara sau paralela.
Evaluarea rezistentei termice totale se poate face facand o medie ponderata intre rezistentele R┴ si Rll dupa cum urmeaza:
- se imparte elementul in straturi prin planuri perpendiculare pe directia fluxului termic si se calculeaza rezistenta R┴, pentru straturile neomogene calculandu-se valoarea preponderenta "lmed
Stratul 2 este neomogen pentru care putem calcula:
R┴ ; [m2K/W]
- se imparte in straturi prin planuri paralele cu directia fluxului termic si se calculeaza Rll cu relatia:
Rll=; [m2K/W]
in care R2=;
Rezistentele R┴ si Rll au valori diferite , iar rezistenta reala se va gasi intre aceste valori. Cercetari experimentale au condus la relatia:
R0=(2R┴+Rll)/3
Daca diferenta dintre R┴ si Rll depaseste 25 %, aceasta metoda nu mai este aplicabila, rezistenta termica putand fi stabilita prin calculul campului de temperatura.
c. Structuri neomogene compuse din diferite materiale cu dimensiuni reduse si forme neregulate
Fie o structura formata din deseuri de piatra si mortar de beton, care contine 4 categorii de materiale omogene de forme diferite. Pentru stabilirea rezistentei termice se procedeaza dupa cum urmeaza:
- se determina volumul fiecarui material care are aceeasi conductivitate termica "l
- se determina aproximativ conductivitatea termica medie, utilizand expresia mediei ponderate
,
in care: l - reprezinta conductivitatile termice ale materialelor omogene
V1,2,3,4 - volumele pe care le ocupa aceste materiale, exprimate in %
Cu aceste conditii simplificatoare rezistenta termica va putea fi calculata cu expresia:
R0=
d. Structuri care contin straturi de aer
Se cunosc de multa vreme calitatile termoizolatoare ale straturilor de aer, iar datorita costului redus al acestor structuri, au o larga utilizare.
Proprietatile termice ale structurilor de aer au constituit obiectul multor cercetari, iar rezistenta lor termica este in multe tari normata.
Modul cum actioneaza stratul de aer ca material termoizolant este putin cunoscut, deseori aparand erori, care conduc la situatii neeconomice.
Fluxul de caldura unitar "q" care trece printr-un strat de aer se compune din fluxul convectiv "qcv", fluxul radiant "qr", transmis intre suprafetele 1 si 2care limiteaza stratul de aer de grosime "da", precum si fluxul conductiv "qcd"
q12=qcd+qcv+qr [W/m2]
4.Rezistentele termice pentru elementele neinertiale
Golurile de lumina pun probleme din punct de vedere termic, intrucat in acest caz intervin cu o pondere foarte mare, argumente de confort optic si de estetica.
Din punct de vedere termic, golurile de lumina, ferestre si luminatoare reprezinta puncte slabe in capacitatea de izolare a constructiei si din aceasta cauza, multa vreme suprafetele lor au fost reduse la minimum. Cerintele de confort optic au impus in ultimele decenii marirea sensibila a acestor goluri de lumina, care au ajuns sa inlocuiasca in mare masura partea opaca, incat s-a ajuns la motiunea de pereti exteriori vitrati.
Acest tip de perete este insa permeabil la aer si caldura, producand curenti de aer reci suparatori, protejeaza insuficient contra aporturilor de caldura vara, este o sursa importanta de pierderi de caldura, devenind o principala sursa de reducere a gradului de confort termic.
Reducerea efectelor negative a constituit o preocupare continua a tehnicienilor, astazi existand o experienta acumulata, din care rezumam:
suprafetele vitrate raman la limita confortului optic, existand astazi norme care sa asigure variante optime;
marimea rezistentelor termice s-a putut obtine prin optimizarea grosimii straturilor de aer, prevederea a doua sau chiar trei straturi transparente cu calitati termice ridicate;
marirea temperaturilor suprafetelor superficiale prin cresterea valorii coeficientului de conventie "acvi", spaland cu aer aceste suprafete uneori in interiorul suprafetelor transparente se introduce aer cald, micsorand fluxul termic transmis.
5.Rezistente la transfer de masa
5.1.Bazele analitice ale transferului de masa
a. Conditiile fizice de transfer de masa
In aprecierea permeabilitati la transfer de masa a materialelor utilizate pentru anvelope, trebuie sa se tina seama de doua fenomene fizice si anume:
transferul de masa sub forma de vapori, se datoreaza diferentelor de presiuni partiale a vaporilor de apa din aerul celor doua medii despartite de structura;
transferul de masa sub forma lichida se face prin capilaritate, intre cele doua suprafete ale materialului de constructie, cauza fiind umiditatea relativa.
Rezulta ca in acelasi timp, printr-un element de constructie, exista doua componente de transfer de masa, pentru care exista diferente de potential diferite, sensul transferului fiind important si determinabil pe baza starii fizice locale a parametrilor de stare ai aerului din interior si exterior.
Pentru aplicarea acestor fenomene de transfer, vom conveni sa notam fluxurile unitare de masa astfel:
qv - fluxul unitar de masa sub forma de vapori, care se transforma datorita diferentelor de presiuni partiale "spv";
qe - fluxul unitar de masa sub forma lichida, transmis prin capilaritate, datorita diferentelor de unitati relative "Dj
Stabilirea sensului de transfer se va face considerand un perete plan delimitand aer exterior in conditii climatice de iarna si de vara.
In perioada de iarna, fluxul termic va avea directia I E, deoarece ti>te; fluxul de masa sub forma de vapori va avea aceeasi directie pvi>pve, in timp ce directia fluxului de masa transmis prin capilaritate va fi opus primelor doua deoarece jE>jI (80%>50%).
In perioada de vara sensurile primelor doua componente (q si qv) se schimba, fiind de la exterior la interior, iar a componentei "qe" va fi tot in opozitie cu primele doua (jI>jE
Aceste observatii fenomenologice sunt foarte importante, deoarece vaporii de apa pot intalni in calea lor conditii fizice de condensare, revenind la interior gratie componentei "qe", putand crea suprafete cu condens. O situatie mai dificila este aceea cand vaporii de apa ce condenseaza in structura pot ingheta. Fenomenul de inghet si dezghet poate avea ca efect distrugerea materialului.
Pe de alta parte, in procesele de transfer de masa, trebuie sa se tina seama de proprietatile si starea de umiditate a materialelor, din care punct de vedere acestea prezinta urmatoarele stari de umiditate:
umiditate libera, formata prin condensarea vaporilor de apa in interiorul materialului, prin contactul direct al materialelor cu apa sub forma lichida;
umiditate de sorbtie, formata prin sorbtia umezelii din aer, adica prin contactul materialului cu apa sub forma de vapori.
Marimea acesteia creste cu umiditatea relativa a aerului inconjurator si descreste cu temperatura.
Din reprezentarea alaturata a izotermelor de sorbtie, rezulta ca exista 3 zone caracterizate astfel:
zona 1 - pe suprafata porilor si a capilarelor materialelor se formeaza sub actiunea fortelor moleculare, o pelicula subtire dintr-un strat monomolecular;
zona 2 - sorbtia vaporilor de apa se extinde in grosimea materialului si pe suprafata porilor se formeaza un strat
polimolecular. Deplasarea treptata a umezelii in material are loc incet in timp si reprezinta fenomenul difuziei vaporilor de apa prin peretii porosi;
zona 3 - la absorbtie se adauga fenomenul de condensatie capilara. In acest stadiu, umezeala se deplaseaza atat sub forma de vapori cat si sub forma lichida, din care cauza fenomenul nu mai poate fi bine cuprins in modelele de calcul existente.
Modelele de calcule vor fi prezentate si dezvoltate iau in considerare ipoteza materialelor cu o capilaritate foarte redusa.
Pe de alta parte, Eichler, clasifica materialele de constructie dupa raportul dintre fluxul de masa si luxul de caldura.
Din clasificarea facuta se constata ca zidaria din caramida are un raport maxim intre cele doua componente, motiv pentru care acesta nu a ridicat probleme higrotermice de-a lungul timpului.
Straturile neomogene aparute ulterior a creat si creeaza probleme diferentelor de comportament higrotermice.
b. Parametrii termofizici ai transferului de masa
Materialele de constructii opun o anumita rezistenta la transferul de masa, in functie de de structura lor si de continutul de umiditate. De aceea, in alcatuirea elementelor de constructii (pereti, plansee, terase etc.) trebuie sa se tina seama de natura materialelor, de modul cum se comporta ele la transferul de masa.
Relatiile generale ale campului de umiditate si ale fluxului de vapori dintr-un element de constructie se deduc pe baza ecuatiei difuziunii, cunoscuta ca legea lui Fick.
div.grad C;
in care "C" este concentratia vaporilor de apa iar "Kd" coeficientul de difuzie al vaporilor.
Fluxul elementar de umiditate este proportional cu gradientul de concentratie, dupa cum fluxul elementar de caldura, in cazul conductiei, este proportional cu gradientul de temperatura.
Astfel, pentru transferul de masa se poate scrie expresia fluxului unitar:
Pe baza legii lui Fick care arata ca difuziunea este dependenta de campul de concentratie, fluxul unitar de vapori se poate exprima si sub forma:
qv=bDC=b(C1-C2); Kg/m2
in care "b" este coeficientul de transfer superficial de masa, in m/s; iar C1, C2 concentratiile vaporilor de apa intre planurile de transfer.
Expresia luxului de masa dupa Dalton, functie de diferenta vaporilor de apa are forma:
qv=b(pv1-pv2); (pv1>pv2); [Kg/m2]
De asemenea Lewis a exprimat aceeasi marime functie de diferenta continuturilor de umiditate:
gv=s(x1-x2); (x1>x2);
Intre coeficientii de transfer de masa se pot stabili, aplicand legea gazelor perfecte, urmatoarele relatii:
s bg b=b; b=;
Elementele de constructie sunt in general pereti plani, cu fete paralele, avand pe de o parte doua din dimensiuni mai mari, in raport cu cea de-a treia, deci efectele marginale pot fi neglijabile, iar pe de alta parte, toate suprafetele peretilor sunt izoterme, ceea ce face ca variatia campului de temperatura sa aiba loc numai pe directia normala pe suprafetele izoterme. In acest caz, ecuatia diferentiala a conductiei devine:
care prin, integrare, cu conditii la limita de speta intaia si a treia, conduce la expresia campului de temperatura:
precum si expresia fluxului unitar de caldura:
In mod analog se poate scrie pentru campul de concentratie, tinand cont de legea gazelor perfecte:
sau
In cazul in care se admite aproximatia:
se poate scrie:
Daca se ia in consideratie expresia fluxului de masa dupa Dalton si Fick, precum si legatura dintre coeficienti de transfer b si b, rezulta:
Daca definim rezistenta la transfer termic de masa ca fiind analoaga transferului de caldura in regim stationar putem scrie:
; (m2hmmHg/g)
in care: Rvi=; Rve 0,2 Rvn=
cu m - coeficient de transfer de masa, b si b coeficient de transfer superficial
; [g/m h mmHg]
5.2.Analiza zonelor de condensare in structuri
Se va considera o structura neomogena pentru care se va stabili conditiile de condensare a vaporilor de apa, in conditii termice de iarna.
Fiecare element omogen este caracterizat prin marimile fizice specifice: l si m; pe de alta parte vaporii de apa sunt caracterizati de presiuni partiale (pv) si de saturatie (ps), care la randul lor depind de starea termica locala.
Evident ca ps>pv in conditii fizice normale, pe cand conditiile de egalitate creeaza premizele condensarii vaporilor de apa pe o suprafata sau zona structurala.
Analogia fizica demonstrata anterior ne va permite ca in cadrul unei structuri neomogene, sa reprezentam grafic variatiile de presiuni partiale, luand pe abscisa scara rezistentelor la transfer de masa conductiv (Rv).
Asa cum s-a aratat, pentru o structura oarecare vom putea scrie o expresie corespunzatoare conservarii fluxului de masa:
; [g/m2h]
S-a aratat deja ca Rvi=1/bi si Rve=1/be, reprezinta rezistentele la transfer superficial de masa, ale caror valori numerice fiind foarte mici, se vor putea neglija in aplicatiile care urmeaza.
Cu aceste simplificari, expresia de mai sus va putea fi scrisa sub forma dependentei de rezistenta la transfer conductor de masa:
gv====; [g/m2h]
Procedand ca si in cazul campului de temperatura, vom obtine expresia campului de presiuni partiale ale vaporilor de apa (pvx).
Pentru suprafata, determinarea presiunii partiale se face functie de umiditatea relativa "ji", cunoscuta din conditiile de confort si presiune de saturatie (psi), corespunzatoare acestei stari [I=I(j,t)]:
; si respectiv
sau cu ajutorul diagramei i-x.
Pentru celelalte suprafete vom putea scrie:
; [mmHg]
; [mmHg]
; [mmHg]
Reprezentarea grafica a presiunilor partiale si de saturatie ne va permite sa analizam situatiile in care structurile au un prost comportament la transferul de masa. Daca in toata structura intre cele doua valori exista o diferenta semnificativa, se poate afirma ca structura va avea un bun comportament la transferul de vapori.
a.Cazul condensarii vaporilor de apa pe o suprafata
Desigur nu vom lua in discutie cazul condensarii pe o suprafata interioara, deoarece conditia de necondensare a fost impusa structurii prin rezistenta termica minima necesara.
Punem in discutie, acum condensarea pe o suprafata din interiorul structurii. Conditiile fizice ce trebuie indeplinite pot fi scrise fie sub forma pvx=pvs, fie conditiile de temperatura de condens tx=tt
Acceptand reprezentarea grafica a presiunilor functie de rezistenta la transfer, variatia este liniara.
In ambele cazuri putem pune problema determinarii fluxului de masa condensat:
; [g/m2h]
Se observa ca pe suprafata de condensare pv =ps
In prezentarea grafica alaturata s-a admis ca pe suprafata stratulzui 4, cele doua presiuni devin egale, putandu-se asista la un fenomen de condensare pe inteagra suprafata.
Se pot presupune doua situatii: una in care condensarea este partiala si cea de a doua in care este totala.
Pe de alta parte, conditiil4e termice locale pot permite inghetarea acestor vapori, caz in care returul acestora catre suprafata de plecare, odata cu componenta lichida nu mai este posibila. Aceasta situatie termica trebuie evitata, prin modificarea rezistentelor locale, in scopul pozitivarii temperaturilor.
Pentru determinarea fluxului de masa condensat, este necesar sa se determine in prealabil timpul "t" cat dureaza condensarea.
Pentru aceasta se determina, in primul rand, de la ce temperatura exterioara va fi sub aceasta valoare.
Determinarea temperaturilor exterioare (ti, ji j). Apoi se determina durata in ore "tz", functie de zona de temperaturi corespunzatoare amplasamentului.
Fluxul de masa condesat va fi dat de expresia:
Gcd=gcd*tz [g/m2]
Sigur ca aceasta valoare ne va permite sa apreciem daca condensarea este totala sau partiala, situatie pe care vom scrie expresia fluxului de masa intrat in structura: gvi= sau Gvi=gvi*tz; [g/m2].
Daca Gvi=Gcd, condensarea este totala, contrar sau partial.
Pentru a asigura o comportare buna a structurilor, este necesar ca in timpul verii masa de vapori condensata sa se poata evapora catre una dintre cele doua suprafete, pe
care avem aceeasi presiuni partiale admitand ca fereastra este deschisa.
In interiorul elementului, pe sprufata de condensare vom avea presiune de saturatie maxima deoarece j jmax
Cu aceste ipoteze vom putea scrie:
gev= [g/m2h]
sau
Gev=gev*24*30; [g/m2]
conditia de evaporare fiind de 30 de zile.
Cazurile multiple de aparitie a condensului pe suprafetele interioare , ne face sa credem ca pana la aparitia conditiilor favorabile de evaporare din perioada de vara, masa de vapori condensata se intoarce catre suprafata interioara si datorita temperaturilor scazute, nu se poate evapora, formand ceea ce numim "igrasia".
b. zone de condensare
Acest caz particular reprezinta o extensie a celui studiat anterior, fapt pentru care raman valabile toate ipotezele de calcul explicitate anterior. Pentru acest caz se poate scrie:
; [g/m2]
Una din marile probleme ale condensarii o reprezinta pericolul de inghet-dezghet. Analiza acestei situatii se poate face prin incercari succesive, de fiecare data verificandu-se daca apar temperaturi de inghet sau dezghet.
5. Rezistentele optime la transferul de masa
Optimizarea rezistentelor higrotermice ale unei structuri, presupune si analiza la transfer de masa, astfel incat condensarile sa fie evitate sau protejate impotriva inghetului.
Putem totusi introduce notiunea de rezistenta optima, daca admitem ca aceasta va trebui sa evite condensarea in zone de temperatura negative si sa permita evaporarea pe timpul iernii pe suprafata interioara.
Stabilirea acestei rezistente se face din aproape in aproape, parcurgand toate fazele de verificare explicate anterior.
5.4. Masuri constructive specifice transferului de masa
In actiunea de reducere a efectelor nefavorabile, datorate migratiei vaporilor de la interior catre exterior, un factor important il constituie bariera de vapori, compusa din materiale care, desi au grosimi reduse, opun o rezistenta mare la trecerea vaporilor.
In interiorul peretelui in starea initiala a existat o umiditate de maximum 15% din greutatea materialului. Dupa cateva luni de exploatare a acestui perete, la o incapere care avea umiditatea relativa ji=80%, variatia umiditatii a ajuns la 50%.
Se observa ca spre exterior aceasta umiditate scade rapid, ceea ce se explica prin
capacitatea peretelui de beton usor de a elimina rapid umiditatea sau cum se spune, datorita posibilitatii de a respira.
In cazul "b" se analizeaza montajul unei bariere de vapori la exterior, caz in care se constata o crestere a umiditatii interioare.
In cazul "c", cand bariera de vapori se afla la interior, se constata o scadere a umiditatii interioare cu 5-6%.
In mod intuitiv, aceasta experienta rata avantajele amplasarii la locul potrivit a barierei de vapori si ca placajele impermeabile ale zidariei la exterior, pot da rezultate foarte proaste.
Astfel a aparut recomandarea ca bariera de vapori sa fie amplasata pe partea calda a peretelui, existand solutii ca: tapete, cartoane asfaltate etc.
6. Optimizarea rezistentelor termice
6.1. Evolutia rezistentelor termice in tarile CE
Criza energetica declansata in 1972, a obligat tarile CE sa ia masuri de conservare energiei, printre care putem enumera si aceea legata majorarea rezistentelor termice ale anvelopelor clairilor de toate categoriile.
Pentru a putea evidentia corelatia dintre rezistentele termice si economia de energia vom presupune transferul printr-un perete plan.
Consumul de combustibil se determina cu relatia:
Rezulta deci, ca cu cat rezistenta termica este mai mare consumul de combustibil este mai mic.
Pentru Franta si Germania, sunt retinute valorile Ropt pentru evolutia lor in perioade 1973 - 1985.
Tara |
Perioada |
Valoarea rezistentei termice in m2K/W |
||
Pereti exteriori |
Ferestre |
Acoperisuri |
||
Franta |
|
|
|
|
Germania |
|
|
|
|
In Romania evolutia nu este spectaculoasa, deoarece prin rezistentele nominale necesare ne situam la nivelul anului 1976 al tarilor CE.
Desi metode de calcul a unor structuri optimizate sunt publicate inca din anul 1976, normativul C107, care se refera la rezistentele termice optime este actualizat in 1994 si publicat in 1996.
6.2. Criterii de optimizare a rezistentelor termice
Intrucat variatia grosimii termoizolatiei are variatii diferite asupra factorilor economici este necesar a se determina acea grosime care are efect economic global cel mai avantajos asupra ansamblului de factori economici. Operatia de optimizare se face dupa doua criterii: al cheltuielilor totale si al consumului total de energie.
Metodologia de optimizare este similara pentru cele doua criterii, considerand ca solutia optima este cea pentru care cheltuielile , respectiv consumul de energie sunt minime.
Atunci cand cel doua criterii nu conduc la aceeasi solutie optima, se va face o integrare a celor doua criterii pentru a putea alege intre solutiile optime, stabilite dupa fiecare intre criterii.
a. Optimizarea dupa criteriul cheltuielilor totale
Cheltuielile totale cuprind atat cheltuieli pentru investitii, pentru constructii si instalatii de incalzire, cat si cele de exploatare ale instalatiilor de incalzire. In calculul cheltuielilor se includ numai acelea care se diferentiaza, in functie de grosimea termoizolatiei. Intrucat cheltuielile de exploatare (intretinere) ale constructiilor nu sunt diferentiate dupa grosimea termoizolatiei si in general nici dupa solutia de alcatuire a elementului de inchidere, acestea nu se iau in considerare.Calculul de optimizare a grosimii termoizolatiei se raporteaza la 1 m2 suprafata de inchidere.
Se are in vedere treptele de variatie ale grosimii termoizolatiei sunt stabilite de catre producatori. Astfel pentru vata minerala modulul este de 10 mm; pentru poliester 12 mm; pentru BCA 125 mm.
Cheltuielile totale pot fi exprimate printr-o relatie de forma:
S=C+I+nE; [lei/m2]
in care:
S - cheltuieli totale ale elementelor comparate, in lei/m2;
C - costul de investitii al partii de constructie, in lei/m2;
I - cota pateu din costul de investitii al instalatiei de incalzire;
E - cota parte din cheltuielile anuale de exploatare ale instalatiei de incalzire, in lei/m2;
n - numarul de ani in care se care ca suma cheltuielilor sa fie minima.
In costul "C" al partii de constructie se inchide numai costul termoizolatiei. In cazul termoizolatiilor grele, la care in functie de grosimea termoizolatiei - pot varia si alte elemente ale constructiei (de exemplu structura de rezistenta care suporta termoizolatia acoperisului, fundatia si structura care suporta peretele) se ia in considerare si suportul de cost aferent.
Pentru costul investitiei si cheltuielile de exploatare ale instalatiei de incalzire, se considera numai cota parte aferenta pierderii de caldura prin elementul de inchidere respectiv.
Cota parte din costul investitiei al instalatiei de incalzire "I" se stabileste cu relatia:
I=q*i; [lei/m2]
in care; q este fluxul unitar de caldura transmis prin elementul de inchidere considerat, calculat conform prevederilor STAS 1907
q=; [W/m2]
i - indice de cost al instalatiei de incalzire, in lei/W;
R0 - rezistenta termica globala a elementului considerat;
ti, te - temperaturile de calcul pentru aerul interior si exterior.
Rezistenta termica se determina cu relatiile cunoscute, considerand ca parte variabila rezistenta termoizolatiei si restul ca parte fixa:
R0= R1+R2+R3+ . +Riz+ . Rn+Re; [m2K/W]
Indicele de cost al instalatiei de incalzire cuprinde toate elementele instalatiei: centrala termica, retele de distributie, instalatia interioara precum si costul constructiilor aferente, care variaza cu capacitatea instalatiei, de exemplu cladirea centralei termice si elementele de sustinere a retelei de distributie.
Valoarea indicelui de cost "i" se considera constanta in calculul de optimizare indiferent de grosimea termoizolatiei, ca urmare a faptului ca acesta corespunde unei anumite solutii de incalzire care ramane aceeasi in comparatia facuta intre diferitele grosimi.
Cota parte a cheltuielilor anuale de exploatare din instalatia de incalzire "E" se determina diferentiat dupa cum alimentarea cu caldura se face dintr-o sursa termica proprie atunci se determina cheltuielile anuale de exploatare:
E=Ec+Ed; [lei/m2an];
in care:
Ec - reprezinta cota parte din costul de combustibil consumat anual, care se determina cu relatia:
Ec=Ban*Cc; [lei/m2an];
cu: ; [kg/an], consumul anual de combustibil, stabilit functie de sarcina termica anuala "Qan", randamentul global al instalatiei "h" si puterea calorifica inferioara a combustibilului "Pci" in KJ/Kg.
Ed - cota parte din cheltuielile de exploatare ale sursei de caldura, care includ: costurile energiei electrice, salariile personalului de exploatare, cheltuielile de intretinere si reparatii a investitiei referitoare la sursa de caldura.
Ed=q*Cd; [lei/m2,an];
in care "Cd" reprezinta indicele de cost al cheltuielilor de exploatare in sursa de caldura, in lei/W,an, aceste variind functie de capacitatea sursei, tipul echipamentelor si natura tipului de combustibil utilizat.
Daca alimentarea cu caldura se face dintr-o sursa care livreaza caldura la pret tarifar, atunci cota parte din cheltuielile anuale de exploatare se determina cu relatia:
E=qan*Ce; [lei/m2an]
qan - caldura pierduta anual prin elementul de considerat, in KWh/m2an;
Ce - pret tarifar al calduri livrate, in lei/KWh.
In calculul de optimizare a protectiei termice, numarul de ani in care se considera economica recuperarea unui spor de investitii, este de n=8 ani, valoare cuprinsa intre cea utilizata in domeniul constructiilor (n=5 ani) si cea a energiei (n=10 ani).
Pentru efectuarea calcului de optimizare se cauta exprimare celor trei componente functie de R0.
C=a1+b1*R0; [lei/m2];
I=a2+b2/R0; [lei/m2
E=a3+ b3/R0; [lei/m2
in care ax, bx sunt constante pentru un caz particular studiat.
Inlocuind in relatia generala se obtine:
S=C+I+nE=(a1+a2+na3)+b1R0+; [lei/m2].
Valoarea "R0" pentru care cheltuielile totale sunt minime, este aceea pentru care se anuleaza derivata functiei S=f(R0)
; de unde
; [m2K/W].
Reprezentand grafic aceste dependente se pot obtine imagini calitative asupra optimizarii:
b. Optimizarea dupa criteriul
total de energie
Consumul de energie inglobata sau de exploatare, sub forma de combustibil conventional (Pci=7000x1,16x3600 KJ/Kg) se poate scrie sub formula:
B=B1+B2=B1+bEe; [Kgcc]
in care:
B - reprezinta consumul total de combustibil;
B1 - consumul de energie directa sub forma de combustibil;
B2 - consumul de combustibil pentru introducerea energiei electrice;
b - consumul specific de combustibil pentru producerea energiei electrice, tinand seama ca o parte din energie se produce in centralele hidroelectrice (c=0,325 Kgcc/KWh);
Ee - consumul de energie electrica, in KWh.
Relatia de optimizare este similara celei prezentata la metoda precedenta, grosimea optima fiind aceea pentru care consumul total de energie sub forma de combustibil "Bs" este minim. Bs= Be+Bi+nBE [Kgcc/m2]
in care:
Be - consumul de energie inglobata in elementele de constructii;
Bi - cota paret din consumul de energie inglobata in instalatia de incalzire;
Be - cota parte din consumul de energie de exploatare in instalatia de incalzire;
n - numarul de ani in care se cere ca consumul de energie sa fie minim.
c. Alegerea solutiei optime prin integrarea criteriilor
Pentru cazul in care grosimea optima determinata dupa criteriul cheltuielilor totale minime si cel al energiei totale consumate minime, nu este aceeasi, trebuie optat pentru una din cele doua valori grosimi sau eventual pentru una intermediara daca nu au valori pe trepte alaturate de dimensiuni.
Modul de alegere are in vedere ca fata de grosimea A care conduce la cheltuieli totale minime, o alta grosime B corespunzand consumului minim de energie sau in apropiere de acesta, asigura o economie de combustibil.
Ca urmare o astfel de solutie B va fi preferata, fata de A, daca asigura urmatoarele conditii economice:
sporul de cheltuieli de investitii pentru constructii si instalatii (cheltuieli imediate) sa poata fi compensat economic de cheltuieli de exploatare - ca urmare a unui consum mai redus de combustibil - intr-un numar mai mic decat cel luat in calculul de optimizare (n=8 ani).
Aceasta conditie, reprezinta sporul de cheltuielilor de investitii ca urmare a aplicarii solutiei cu grosime B, in locul solutiei cu grosime A, exprimate cu relatia:
D(C+I)=(C+I)B-(C+I)A; [lei/m2].
Consumul suplimentar de combustibil, daca se aplica solutia A in locul solutiei B va fi: DB=BA-BB; [Kgcc/an]
Costul combustibilului economisi sa fie inferior costului combustibilului importat, la pretul pietii externe "P", conditie care se exprima sub forma:
[lei/Kgcc].
In cazul in care solutia cu grosimea B nu indeplineste ambele conditii, se considera optima solutia cu grosimea A.
6. Norme nationale referitoare la protectia termica a cladirilor
In cele ce urmeaza, vor fi prezentate prevederile "Normativului privind calculul coeficientilor globali de izolare termica la cladirile de locuit", indicativ C107/1-94.
Prevederile acestui act normativ se aplica la toate cladirile de locuit sau colective, proiectate sau supuse lucrarilor de ameliorare si modernizare.
Rezistenta termica medie a anvelopei unei cladiri "ROM" se calculeaza cu relatia:
ROM=; [m2K/W]
in care:
S - reprezinta suprafata anvelopei cladirii , reprezentand suma tuturor suprafetelor elementelor de constructie perimetrale ale cladirilor, prin care au loc pierderile de caldura, care se calculeaza cu relatia:
S=Se+ Sf+ St+ Sa+ Sb+ Sp+ Sr+ Si+ Sn; [m2]
Se - suprafata opaca a peretilor exteriori, inclusiv suprafata adiacenta rosturilor deschise spre exterior;
Sf - suprafata ferestrelor si usilor exterioare, precum si a peretilor exteriori vitrati si a luminatoarelor;
St - suprafata planseelor de peste ultimul nivel, sub terasa;
Sa - suprafata planseelor de peste ultimul nivel, sub pod;
Sb - suprafata planseelor de peste pivnite si subsoluri neincalzite;
Sp - suprafata elementului in contact direct cu solul;
Sr - suprafata peretilor exteriori in contact cu solul;
Si - suprafata planseelor care delimiteaza cladirea la parte inferioara, de exterior sau de spatii cu temperatura mai redusa cu 10 oC decat locuinta (la ganguri de trecere, bowindouri, etc.);
Sn - suprafata peretilor si planseelor care separa volumul cladirii de spatii adiacente neincalzite sau mult mai putin incalzite, de spatii avand alte destinatii, precum si de rosturi inchise.
; [W/K]
qa qb qa qr qn
Rezistentele termice medii "Rom" ale elementelor de constructie care alcatuiesc anvelopa cladirilor de locuit, au valori minime normate, dupa cum urmeaza:
Nr. crt |
Elementul de constructie |
Suprafete de referinta |
Rom (m2K/W) |
|
Cladiri proiectate |
||||
Pana la 1.01.1996 |
Dupa 1.01.1996 |
|||
|
Pereti exteriori (exclusiv suprafete vitrate, inclusiv rosturile deschise) |
Se |
|
|
|
Tamplarie de aluminiu |
Sf |
|
|
|
Plansee peste sub terasa ultimul nivel sub pod |
St Sa |
|
|
|
Plansee peste pivnite si subsoluri neincalzite |
Sb |
|
|
|
Placi in contact cu solul |
Sp |
|
|
|
Plansee care delimiteaza |
Si |
|
|
|
Pereti adiacenti rosturilor inchise |
Sn |
|
|
qj 0,9, factor de corectie a temperaturilor adiacente, care ia in considerare influenta favorabila a unor elemente de constructie sau pozitia acestora in raport cu actiunea vantului. De exemplu existenta jaluzelelor, balcoanelor inchise etc.
pentru verificarea gradului de izolare termica al unei cladiri se defineste marimea numita "coeficient global de ionizare termica, notat cu G" care este comparat cu coeficientul normat de izolare termica "GN"; G GN.
Pentru stabilirea coeficientului global de izolare termica "G" se utilizeaza relatia:
; [W/m3K]; in care:
V - reprezinta volumul incalzit al cladirii, cuprinzand atat incaperile incalzite direct cat si indirect;
DG - termen ce majoreaza pierderile de caldura prin transmisie datorita influentilor de aer, normate pentru asigurarea ratei minime de aer proaspat.
DG=Ca*N
Cu "Ca" definit ca produsul dintre caldura masica si densitatea aerului la 20 oC, marime exprimata in Wh/m3K si N - numarul de schimburi orare minime ce trebuie asigurate.
Pe de alta parte GN=f(, nr. nivel); valoarea acesteia variind intre 0,20 si 1,1 Wh/m
7. Stabilitatea termica a incaperilor si elementelor de constructie
Analiza stabilitatii termice a elementelor de constructie si a incaperilor are importanta din doua puncte de vedere:
a. mentinerea unui temperaturi a suprafetei interioare in limitele cerute de confortul interior si de punctul de roua al aerului interior fata de oscilatiile de temperatura ale aerului exterior;
b. contributia pe care o are prin aceasta elementul de constructie interior in mentinerea unei temperaturi cat constante a aerului interior si a temperaturilor de confort interioare, fata de oscilatiile de temperatura ale aerului interior.
In cazul al doilea nu mai este suficient a se determina stabilitatea termica a unui element separat, ci trebuie sa se tina seama de aporturile tuturor elementelor care limiteaza incaperea la asigurarea unei temperaturi interioare cat mai constante.
De exemplu, sunt incaperi al caror perete exterior este complet vitrat si unde, cu toate ca stabilitatea termica a incaperii poate fi asigurata prin celelalte elemente exterioare, ca de exemplu, pereti interiori, tavan, pardoseala etc.
Stabilirea termica a incaperilor se poate determina din expresia amplitudinii oscilatiei fluxului termic dat de aparatele de incalzire, dupa cum urmeaza:
Aq=qmax-qmed= (timax-qimax ai(ti-qi ai timax-ti)-(qimax qi a(Ati-Aqi
Definind "U" coeficient de asimilare termica alunei suprafete prin raportul Aq/Aqi=U se obtine Aqi=Aq/Ui cu care relatia de mai sus devine:
sau
Pe de alta parte suma tuturor fluxurilor unitare conduce la fluxul total:
In care "M" este definit ca un coeficient de neuniformitate al cedarii caldurii de catre elementele anvelopei, dupa intreruperea furnizarii de energie termica de catre instalatia de incalzire:
aMQ=Ati
Madm=F
cu Bj=
Pentru o incapere se va putea considera:
BFE = , [W/m2K]
Pentru a
BPE(TPI) = , [W/m2K]i
Pentru i se adopta valorile obisnuite functie de directia fluxului termic.
Pentru coeficientul de asimilare termica al suprafetei Ui se va lua in consideratie stratul marilor variatii de temperatura.
Pentru structuri complexe se poate scrie:
D1= U1i =s1
D1 <
(D1 + D2)
(D1 + D2) <
(D1 + D2 + D3)
(D1 + D2 + D3) <
(D1 + D2 + D3 + D4)
Acest document nu se poate descarca
E posibil sa te intereseze alte documente despre: |
Copyright © 2025 - Toate drepturile rezervate QReferat.com | Folositi documentele afisate ca sursa de inspiratie. Va recomandam sa nu copiati textul, ci sa compuneti propriul document pe baza informatiilor de pe site. { Home } { Contact } { Termeni si conditii } |
Documente similare:
|
ComentariiCaracterizari
|
Cauta document |