QReferate - referate pentru educatia ta.
Cercetarile noastre - sursa ta de inspiratie! Te ajutam gratuit, documente cu imagini si grafice. Fiecare document sau comentariu il poti downloada rapid si il poti folosi pentru temele tale de acasa.



AdministratieAlimentatieArta culturaAsistenta socialaAstronomie
BiologieChimieComunicareConstructiiCosmetica
DesenDiverseDreptEconomieEngleza
FilozofieFizicaFrancezaGeografieGermana
InformaticaIstorieLatinaManagementMarketing
MatematicaMecanicaMedicinaPedagogiePsihologie
RomanaStiinte politiceTransporturiTurism
Esti aici: Qreferat » Documente fizica

Estimatori de precizie suplimentari la prelucrarea masuratorilor efectuate in retele planimetrice geodezice cu metoda observatiilor indirecte



ESTIMATORI DE PRECIZIE SUPLIMENTARI LA PRELUCRAREA MASURATORILOR EFECTUATE IN RETELE PLANIMETRICE GEODEZICE CU METODA OBSERVATIILOR INDIRECTE


(9)

RETELE PLANIMETRICE



P(x,y)

N -matricea sistemelor de ecuatii normaleI= (12)

N=Q

N*N=I

 

1

2


R


u

 

x

y

x2

y2



xR

yR



xu

yu

1

x1

Qx1x1

Qx1y1

Qx1x2

Qx1y2



Qx1xR

Qx1yR



Qx1xu

Qx1yu

y1

Qy1x1

Qy1y1

Qy1x2

Qy1y2



Qy1xR

Qy1yR



Qy1xu

Qy1yu

2

x2


Qx2x1

Qx2y1

Qx2x2

Qx2y2



Qx2xR

Qx2yR



Qx2xu

Qx2yu

y2

Qy2x1

Qy2y1

Qy2x2

Qy2y2



Qy2xR

Qy2yR



Qy2xu

Qy2yu




























R

xR

QxRx1

QxRy1

QxRx2

QxRy2



QxRxR

QxRyR



QxRxu

QxRyu

yR

QyRx1

QyRy1

QyRx2

QyRy2



QyRxR

QyRyR



QyRxu

QyRyu




























u

xu

Qxux1

Qxuy1

Qxux2

Qxuy2



QxuxR

QxuyR



Qxuxu

Qxuyu

yu

qyux1

Qyuy1

Qyux2

Qyuy2



QyuXR

QyuyR



Qyuxu

Qyuyu

N=Qxx=n puncte noi



Pt.fiecare punct nou se adauga 2 coloane

-1

0

0

-1


EVALUAREA PRECIZIEI IN RETELELE PLANIMETRICE

1.ERORILE INDIVIDUALE - relativ la punctul de la mijlocul retelei R

,unde So - abaterea standard a unitatii de pondere


,unde[pvv]se va determina cu 2 procedee,n=nr de masuratori,u = nr de necunoscute

Helmert-abatere standard totala(a introdus notiunea)

Pt.pct R abaterea se calculeaza cu relatia

(6`)

Generalizarea formulei 6 ne conduce la determinarea abaterii stand.care este un indicator de precizie pt toata reteaua planimetrica

(7`)

urma Q (13)

2.In fiecare punct nou se determina elipsele erorilor

In pct R de la mij retelei

-semiaxele elipsei

unde λ1si λ2se calculeaza cu relatia (10)

(10`)

Orientarea axei mari a elipsei,adika unghiul format de axa mare a elipsei cu axa x in pct R este notata θcare se calculeaza cu (11`)

.(11`)

Elipsa erorilor ne da domeniul de incredere in jurul punctului R.

Coeficientii de pondere necesari in relatiile(3`) si (4`)pana la (11`)se extrag din matricea inversa N=Q

Denumiri folosite:

a)coef de pondere de forma:

QxRxR si QyRyR se numesc coef de pondere patratici.Acestia se gasesc pe diagonala matricei N=Q

b)Coef de forma QxRyR se numesc coaf de pondere dreptunghiulari si intervin la fiecare pct nou pe diagonala

Coef de pondere patratici de forma Qxx se calculeaza k la lucrarea 4

Coef de pondere dreptunghiulari se calculeaza analog,dar se fac produsele pe diagonala



tab 7

Qxx

Qyy






x

linie rosie

x


In algebra s-a folositnotiunea de sisteme echivalente si anume:''2 sisteme de ec se numesc echivalente daca au aceleasi solutii''

In geodezie si TPD se folosesc 3 sisteme de ecuatii de echivalenta a unor sisteme de ecuatii de corectii descoperite de catre Schveiber cunoscute si sub numele de regulile Schveiber de echivalenta.Aceste reguli de echivalenta au 2 proprietati:

a.se pot aplica extrem de simplu(fiecare in anumite situatii)

b.conduc la micsorari importante ale volumului de calcul

De fiecare data va rezulta un alt sistem de ec.de corectii echivalent cu sist initial. La fiecare regula treb retinut>: 1.cand se poate aplica regula respectiva, 2.cum se aplica regula

Sub. 2 Situatia 1 de echivalenta. Se considera urmatorul sistem de ecuatii ale corectiilor:

pondere p1;

pondere p2;

.

pondere pn.(1)

Obs!..La fel ca in oricare sistem de corectii n>u(2)

In toate ec intervine nec dz, care in toate ec are coef -1.

n>u+1. Ac.este conditia in care se poate aplica reg1 de echiv a lui Schreiber.

Se va dem. ca sist (1)e echiv cu urm sist de ec.

Se observa ca necunoscuta dz are coeficientul -1 in toate ecuatiile. Sistemul (6.13) poate fi inlocuit printr-un sistem echivalent (6.14), care are un numar de n+1 ecuatii, insa din care lipseste necunoscuta dz:

pondere p1;

pondere p2;

. . .

pondere pn;

pondere .(3)

Ultima ecuatie a sistemului (3) este denumita ecuatie suma. Pentru demonstrarea echivalentei urmarite, se formeaza sistemul de ecuatii normale corespunzator sistemului (6.13):

. .

.(5)

Se deduce necunoscuta dz din prima ecuatie normala:

si se introduce in celelalte ecuatii. In acest fel se obtine:

(7)

Formand direct ecuatiile normale ale sistemului (1) vor rezulta aceleasi ecuatii (7), ceea ce demonstreaza echivalenta cautata.

Sist (7) este sistemul de ec normale obtinut din sist de ec de corectii(1) dupa ce s-a obtinut din sist de ec de corectii, dupa ce s-a eliminat nec dz. Si acest sist indepl cele 3propr specifice sist lor de ec normale:

a).sist. este patrata;dar spre deoseb. de (5) are cu dimensiune mai putin:cu linii si cu coloane.

b)este simetrie fata de diagonala principala

c)termeni de pe diagonala sunt pozitivi

Dupa determinarea (calcularea) necunoscutelor ce intervin in(7):

dx1 dx2 dxn cu metoda Gauss(eliminari succcesive se determina(calc.)

Datorita regulii 1 de echiv nu se mai rez sist de ec normale(5) ci se rez.(7), care are o nec mai putin.

Sub. 3.Situatia 2 de echivalenta. Fie un sistem de k ecuatii ale corectiilor, cu aceiasi coeficienti ai necunoscutelor x, insa cu termenii liberi diferiti. Ecuatiile au ponderi diferite.

 pondere p1;

 pondere p2;

. . . (1) pondere pk.

Acest sistem este echivalent cu urmatoarea ecuatie:

pondere , (2) (6.19)

in care termenul liber este media ponderata a termenilor liberi din sistemul (6.18) iar ponderea sa este egala cu suma ponderilor ecuatiilor (6.18).

Intr-adevar, sistemului (6.18) ii corespunde urmatorul sistem de ecuatii normale:

; (6.20)

n>u (5)

Nota:Nu se poate forma un sist de ecuatii normale dintr-o singura ecuatie de corectie.Lucrurile trebuie intelese in felul urm:sis 1 este o componenta a unui sist de ecuatii normale mult mult mai mare in care se respecta regula 5.Aceasta situatie de echivalenta inseamna ca in loc sa lucrezi cu (1) inlocuiesc sistemul cu ac ec (2)

Si la aceasta regula de echivalenta se respecta regula ca poate fi aplicata cu usurinta ec (2).

Ecuatiei (6.19) ii corespunde acelasi sistem de ecuatii normale.

Obs. Este de observat ca aceasta demonstratie este posibila numai in situatia in care numarul total al ecuatiilor de corectii ramane mai mare ca numarul necunoscutelor. Aceasta presupune ca situatia examinata se intalneste intr-un cadru mai general, intr-o prelucrare in care intervin mult mai multe ecuatii decat cele avute in vedere. O formulare mai exacta a cestei reguli ar fi: un sistem particular de ecuatii de corectii de forma (6.18), care este parte componenta a unui sistem mult mai mare, poate fi inlocuit de ecuatia (6.19.) inainte de trecerea la sistemul de ecuatii normale corespondent deoarece contributia acestora este aceeasi.

Sub. 4.Regula 3 de echivalenta pt 2 sist de ecuatii de corectii

Pp ca avem intr-un sistem mare de ecuatii o ecuatie de urm forma:

vk=adx+bdy+cdz+l;p (1)

Ec (1) este adusa la ponderea=1;se inmulteste cu √p

vk'=√padx+√pbdy+√pcdz+√pl;p'=1 (2)

Dem:din ecuatia (1) rezulta acelasi sist ca din ecuatia (2)

Contributia ec (1) la un sist mul mai mare

aapdx+abpdy+acpdz+alp=0

abpdx+bbpdy+bcpdz+blp=0 (3)

acpdx+bcpdy+ccpdz+clp=0

Aceeasi contributie o are si ecuatia (2)

Obs:De multe ori ecuatia de corectie trebuie impartite cu o constanta k

v"'=(a/k)dx+(b/k)dy+(c/k)dz+l/k;p"'=pk2 (4)

Din (4) se obtine (3)

Nu se poate descarca referatul
Acest document nu se poate descarca

E posibil sa te intereseze alte documente despre:


Copyright © 2025 - Toate drepturile rezervate QReferat.com Folositi documentele afisate ca sursa de inspiratie. Va recomandam sa nu copiati textul, ci sa compuneti propriul document pe baza informatiilor de pe site.
{ Home } { Contact } { Termeni si conditii }