QReferate - referate pentru educatia ta.
Cercetarile noastre - sursa ta de inspiratie! Te ajutam gratuit, documente cu imagini si grafice. Fiecare document sau comentariu il poti downloada rapid si il poti folosi pentru temele tale de acasa.



AdministratieAlimentatieArta culturaAsistenta socialaAstronomie
BiologieChimieComunicareConstructiiCosmetica
DesenDiverseDreptEconomieEngleza
FilozofieFizicaFrancezaGeografieGermana
InformaticaIstorieLatinaManagementMarketing
MatematicaMecanicaMedicinaPedagogiePsihologie
RomanaStiinte politiceTransporturiTurism
Esti aici: Qreferat » Documente matematica

Inelul claselor de resturi modulo n



Inelul claselor de resturi modulo n



Operatiile de adunare si inmultire confera multimii Z a numerelor intregi o structura de inel comutativ unitar si fara divizori ai lui zero .(pe scurt inel integru ) .In acest inel multimea nZ a multiplilor numarului natural n (fixat) formeaza un ideal (bilateral) . Pe de alta parte daca I este un ideal al inelului (Z, +, ) atunci I este un subgrup al grupului (Z, +) deci exista un numar natural n astfel incat I = nZ . Daca I = nZ si J = mZ sunt doua ideale ale lui Z atunci I + J este de asemenea un ideal al lui Z si exista d I Z astfel incat I + J = dZ sau nZ + mZ = dZ (putem presupune d I N) . Din relatia n m I dZ rezulta d n si d m , iar din relatia d I nZ + mZ rezulta ca exista a, b I Z astfel incat d = an + bm . Din urma relatiei deducem ca orice divizor comun al lui m si n este si un divizor al lui d . Prin urmare d este cel mai mare divizor comun al numerelor intregi n si m . Analog se demonstreaza ca daca nZ mZ = qZ atunci q este cel mai mic multiplu comun al lui n si m . De asemenea are loc relatia (nZ)(mZ) = (nm)Z .



Inelele factor ale inelului Z se construiesc prin factorizare cu ideale care au forma nZ , n I N . Reamintim ca pornind de la structura de grup aditiv a lui Z si considerand un subgrup nZ al acestuia , relatia

x y x - y I nZ

este o relatie de echivalenta (numita si relatie de congruenta modulo n ) si notata in teoria numerelor prin x s z (mod n) ale carei clase de echivalenta au forma

Clasele de echivalenta se mai numesc si clase de resturi modulo n , in rolul reprezentantului r putand fi ales totdeauna un numar natural cuprins intre 0 si n - 1 . Multimea acestor clase Zn = capata o structura de grup comutativ in raport cu operatia Constructia amintita tine seama numai de operatia de adunare pe Z . Tinand cont si de operatia de inmultire din Z , deci de structura de inel , se poate completa si structura lui Zn . Astfel operatia

impreuna cu operatia de adunare induc pe Zn o structura de inel comutativ si unitar Acest inel poarta numele de inelul claselor de resturi modulo n . Elementele remarcabile ale acestui inel sunt urmatoarele : 0 - elementul neutru (al operatiei de adunare ) , - opusul clasei , - elementul unitate (al operatiei de inmultire ) .

Aplicatia jn : Z Zn definita prin jn (x) = este un morfism unitar de inele deoarece :

Morfismul jn se numeste surjectia canonica a lui Z pe inelul sau factor Zn . Daca n = 0 atunci fiecare clasa de resturi in Z0 este de forma . Surjectia canonica j0 = Z Z0 este si injectiva , deci inelele Z si Z0 sunt canonic izomorfe .

Daca n = 1 atunci = Z , deci toate numerele intregi fac parte dintr-o singura clasa de resturi , iar inelul Z1 este inelul nul , Z1 = .

Inelul Zn are mai multe aplicatii in teoria numerelor . In continuare , pe baza proprietatilor grupurilor finite vom deduce cateva astfel de rezultate . Pentru aceasta vom stabilii mai intai care sunt unitatile (elementele inversabile ) inelului Zn .

Teorema 6.1. In inelul Zn , n > 1, elementul este inversabil daca si numai daca x si n sunt relativ prime .

Demonstratie. Observam mai intai ca daca x si n sunt relativ prime si y = x + kn , k I Zn , atunci z si n sunt de asemenea relativ prime. Daca este inversabila in Z n atunci exista I Z n astfel incat , de unde xz = 1 + kn , pentru un anumit k I Z . Din relatia

xz - kn = 1

rezulta ca divizorii comuni ai lui x si n sunt 1 , deci x si n sunt relativ prime . Reciproc , daca x si n sunt relativ prime , atunci exista numerele intregi a si b astfel incat ax + bn = 1 .Luand imaginile acestor elemente prin surjectia canonica jn si tinand seama ca jn (n) = 0 rezulta , adica este inversabila in Zn .

Conform teoremei precedente , de exemplu , in Z15 , si sunt inversabile , dar nu este inversabila .

Consecinta . Daca n este numar prim , atunci Zn este corp . Intr-adevar daca n este numar prim , atunci 1, 2, . . n - 1 sunt relativ prime cu n si deci toate elementele inelului Zn diferite de elementul neutru al adunarii () sunt inversabile .

2. Consecinta . Inelul Zn (n > 1) contine atatea elemente inversabile cate numere naturale mai mici ca n si prime cu n exista , adica j (n) elemente , unde j : N N este functia lui Euler .

3. Observatie . Legatura dintre elementele inversabile din Zn si j (n) ne permite sa dam o noua demonstratie faptului ca indicatorul lui Euler este o functie multiplicativa . Pentru aceasta vom demonstra lema care urmeaza .

1. Lema . Daca m1 si m2 , sunt numere intregi relativ prime , atunci .

Demonstratie .   Consideram functia f : Z Zm1 x Zm2 , definita prin f (x) = (j1(x ) , j2 (x)) , unde j j2 sunt surjectiile canonice ale lui Z pe Zm1 , Zm2 . Se verifica imediat ca f este morfism de inele . Daca x I Ker f , atunci m1 x , m2 x , si deoarece m1 , m2 sunt relativ prime , deducem m1m2 x . Daca m1m2 x , atunci    x I Ker f . Deci Ker f = m1m2 Z . Conform teoremei fundamentale de izomorfism Im f Z Ker f = Zm1m2 . Deoarece Im f are m1m2 elemente rezulta ca Im f = Zm1 x Zm2 , de unde izomorfismul din enunt .

Aplicand propozitiile din 5. pentru izomorfismul din lema precedenta se obtine U(Zm1m2) u (Zm1) x U (Zm2) din care deducem ca j( m1m2 ) = j(m1) j(m2)  

Nu se poate descarca referatul
Acest document nu se poate descarca

E posibil sa te intereseze alte documente despre:


Copyright © 2025 - Toate drepturile rezervate QReferat.com Folositi documentele afisate ca sursa de inspiratie. Va recomandam sa nu copiati textul, ci sa compuneti propriul document pe baza informatiilor de pe site.
{ Home } { Contact } { Termeni si conditii }